Extensions 1→N→G→Q→1 with N=C4×S3 and Q=C22

Direct product G=N×Q with N=C4×S3 and Q=C22
dρLabelID
S3×C22×C448S3xC2^2xC496,206

Semidirect products G=N:Q with N=C4×S3 and Q=C22
extensionφ:Q→Out NdρLabelID
(C4×S3)⋊1C22 = D46D6φ: C22/C1C22 ⊆ Out C4×S3244(C4xS3):1C2^296,211
(C4×S3)⋊2C22 = D4○D12φ: C22/C1C22 ⊆ Out C4×S3244+(C4xS3):2C2^296,216
(C4×S3)⋊3C22 = C2×S3×D4φ: C22/C2C2 ⊆ Out C4×S324(C4xS3):3C2^296,209
(C4×S3)⋊4C22 = C2×D42S3φ: C22/C2C2 ⊆ Out C4×S348(C4xS3):4C2^296,210
(C4×S3)⋊5C22 = C2×Q83S3φ: C22/C2C2 ⊆ Out C4×S348(C4xS3):5C2^296,213
(C4×S3)⋊6C22 = C2×C4○D12φ: C22/C2C2 ⊆ Out C4×S348(C4xS3):6C2^296,208
(C4×S3)⋊7C22 = S3×C4○D4φ: C22/C2C2 ⊆ Out C4×S3244(C4xS3):7C2^296,215

Non-split extensions G=N.Q with N=C4×S3 and Q=C22
extensionφ:Q→Out NdρLabelID
(C4×S3).1C22 = D8⋊S3φ: C22/C1C22 ⊆ Out C4×S3244(C4xS3).1C2^296,118
(C4×S3).2C22 = Q83D6φ: C22/C1C22 ⊆ Out C4×S3244+(C4xS3).2C2^296,121
(C4×S3).3C22 = D4.D6φ: C22/C1C22 ⊆ Out C4×S3484-(C4xS3).3C2^296,122
(C4×S3).4C22 = Q16⋊S3φ: C22/C1C22 ⊆ Out C4×S3484(C4xS3).4C2^296,125
(C4×S3).5C22 = Q8.15D6φ: C22/C1C22 ⊆ Out C4×S3484(C4xS3).5C2^296,214
(C4×S3).6C22 = Q8○D12φ: C22/C1C22 ⊆ Out C4×S3484-(C4xS3).6C2^296,217
(C4×S3).7C22 = S3×D8φ: C22/C2C2 ⊆ Out C4×S3244+(C4xS3).7C2^296,117
(C4×S3).8C22 = D83S3φ: C22/C2C2 ⊆ Out C4×S3484-(C4xS3).8C2^296,119
(C4×S3).9C22 = S3×SD16φ: C22/C2C2 ⊆ Out C4×S3244(C4xS3).9C2^296,120
(C4×S3).10C22 = Q8.7D6φ: C22/C2C2 ⊆ Out C4×S3484(C4xS3).10C2^296,123
(C4×S3).11C22 = S3×Q16φ: C22/C2C2 ⊆ Out C4×S3484-(C4xS3).11C2^296,124
(C4×S3).12C22 = D24⋊C2φ: C22/C2C2 ⊆ Out C4×S3484+(C4xS3).12C2^296,126
(C4×S3).13C22 = C2×S3×Q8φ: C22/C2C2 ⊆ Out C4×S348(C4xS3).13C2^296,212
(C4×S3).14C22 = C2×C8⋊S3φ: C22/C2C2 ⊆ Out C4×S348(C4xS3).14C2^296,107
(C4×S3).15C22 = C8○D12φ: C22/C2C2 ⊆ Out C4×S3482(C4xS3).15C2^296,108
(C4×S3).16C22 = D12.C4φ: C22/C2C2 ⊆ Out C4×S3484(C4xS3).16C2^296,114
(C4×S3).17C22 = S3×C2×C8φ: trivial image48(C4xS3).17C2^296,106
(C4×S3).18C22 = S3×M4(2)φ: trivial image244(C4xS3).18C2^296,113

׿
×
𝔽